

PERCENT RECOVERABLE REMAINING-PPR

The Metric for the Future?

SERA

1

Planning For Zero Waste VRA 2017

Dana D'Souza Skumatz Economic Research Associates, Inc. (SERA) Lisa A. Skumatz, Ph.D., Principal, 762 Eldorado Dr. Superior, CO 80027 303/494-1178 Skumatz@serainc.com

TOPICS

- Measurement difficulties & criteria for a good metric
- Review of existing methods –pros
 & cons
- Our proposal
- □ Case study
- Implications and Recommendations

>What is measured, improves...

Evaluate to inform decision-making & assure (public) funds being well-spent

>A number alone is not meaningful

Been doing this since 1987 - From independent SERA work 2000, 2002, 2007, 2015, and several client projects Assessed two dozen metrics, more than a score of data sources and calculation methods, and conducted more than a dozen detailed interviews.

THE DIFFICULTIES: REFLECTING PROGRESS → IN A WAY THAT...

Reflects goals	 Variety – multiple metrics / confusing?- What is enough?
Compare over time	 Reflect changes in what you want to reflect Affected by economy? Material changes?
Compare to other towns	What's included;Varied sophistication levels
Low Cost	 Too much or expensive data (or calcs) – so it can be replicable, timely and informative
Multiple haulers / facilities	Data collectionn, authorityEstimations
Supports next steps / causal	 Actionable recommendations- informative

3

SERA

BASIC CLASSES OF TON-BASED PERFORMANCE METRICS AND INPUT DATA

NATIONALLY, A PROBLEM... DATA ISSUES!

Fragmented haulers

- Relatively few contracts / franchises or municipal collection services
- Private landfills / disposal sites
- Little authority (invoked); "estimates"
- Costs and authority affect data availability
- ... and that's just even talking residential!
 Commercial even more complicated / fragmented
- $\Box \rightarrow$ With this in mind major pros / cons

HIGH LEVEL STRENGTHS & WEAKNESSES

Metrics apply to recycling & organics

6

SERA

Metric	Major Pros	Major Cons	Data Needs
Diversion rate	Understandable Attrib to program(s) Traditional	No SR Varies with econ. What's included?	Multiple streams - Tons for programs & disposal***
Diversion/ capita	Simple Program attribution	No SR What's included?	Tons for programs*
Generation /cap	Good comparisons	No pgm attrib alone Varies with econ.	Tons for programs & disposal***
Landfill diversion	Addresses SR	Complex BaseYear No pgm attribution Multiple haulers & facilities Varies with econ	Tons disposed*** & tons disposed in base year***
Capture rate Source: Skumatz SE	Program attribution	No SR What's included? Waste comp data	Tons for programs (mat'l)* & waste comp

*Refers to relative difficulty of obtaining data in poor-tracking states; Multiple haulers, cross borders, estimations; Some, but less, econ effect in program tons.

ACTIONABLE INFO & PROGRESS

- □ I'm a recycling manager... 30% recycling rate-Yay!
- □ What does 30% say about how I'm doing?
 - I'm good I beat other cities & improved over last year
 - Have I caught all the recycling and need to go to the next stream (e.g. yard waste/food scraps)?
- □ Oooh, and Boulder (or Seattle, or SF) is XX%.
 - Am I worse / better? Where? Will I ever clarify what they do and don't count?
- The 30% figure doesn't provide much "next step" guidance

WHAT CAN WORK?

- We were working on projects in several state very different
- What is practical in very different locations? What do we always have?
- Realized, back to basics.
 - One stream we have access to
 - What is the behavior / environmental impact we want to measure?
 - Informational / actionable

Sort the trash and ID if (target) Recoverables remain. Reflects Behavior; immune to economy; immune to waste stream Cost an issue????

% MAY BE HIGH, BUT... HAVE I GOTTEN WHAT I'M CURRENTLY AFTER? OR HIT NEXT STREAM?

CASE STUDY – California Community

Motivation –

- 5-yr audits reviewing progress for 14 cities and 2 sanitary districts
- State measurement approach too convoluted, soft, "phantom counting"
- Wanted something better
 - □ Concrete (more than ZW metrics)
 - □ Immune to business cycles & mat'l substitutions
 - Measure what you're asking people to do
- □ Their name: % "Good Stuff Left"!

CASE STUDY

CASE STUDY

Next Steps & recommendations:

- Learned the organics was food waste, not yard waste or food-soiled paper
- Doing full waste comp 2017 (periodically) recycling detail but mostly self-haul, com'l, dropboxes

12

NATIONALLY, A PROBLEM... DATA ISSUES!

- □ Who Sets Recycling Goals?
- □ Tonnage based concerns (lightweighting etc.)
- Successful SR messages/ buy in bulk
- Market Values
- Environmental
- Lifecycle Implications

Upstream Production Long-haul Breakever	1 Savings – 1 Distances	In trips to the Moon
Aluminum		
Plastics (LDPE & PET)		
Steel		
Paper (News, Cardboar Office Paper)	rd,	(

Excludes direct market prices Source: Adapted from Allaway, OR DEQ

SERA

SUMMARY / CONCLUSIONS

- □ Traditional metrics ok, but data issues (→ \$)
- □ Good direction **RR**-simple, accessible data
 - Be reasonable about measurement subcategories to control cost
 - Works in areas without good data reporting; easy to sectors, etc.
 - Effective for planning / driving Zero Waste
 - Can focus on GHG, Mkt Value, Lifecycle
- Multiple metrics-OH NO? Yes.

Thank You! QUESTIONS?

Dana D'Souza <u>dsouza@serainc.com</u>

Lisa A. Skumatz, Ph.D. Skumatz Economic Research Associates (SERA) 303/494-1178 <u>*Skumatz@serainc.com*</u>

